Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow.

نویسندگان

  • Alan R Brooks
  • Peter I Lelkes
  • Gabor M Rubanyi
چکیده

Subtraction cloning and cDNA arrays were used to compare steady-state mRNA levels in cultured human aortic endothelial cells (HAEC) exposed for up to 24 h to either high-shear (13 dyn/cm(2)) steady laminar flow (LF), an established representation of "atheroprotective" flow conditions, or low-shear (<1 dyn/cm(2)), pulsatile, nonsteady, non-unidirectional flow (disturbed flow, DF) that simulates conditions in the atherosclerosis-prone areas of the arterial circulation. More than 100 genes not previously known to be flow regulated were identified. Analysis of selected genes by quantitative RT-PCR confirmed the results obtained from the microarrays. These data demonstrate that DF is not simply the absence of LF but in fact represents a distinct biomechanical stimulus that has a profound impact upon the gene expression profile of HAEC in culture. In line with previous studies, many of the changes in mRNA levels induced by LF are atheroprotective. In contrast, DF upregulated the mRNA levels of a plethora of proatherosclerotic genes including proinflammatory, proapoptotic, and procoagulant molecules. For some of the genes whose expression was altered by DF and LF, corresponding changes in EC function (proliferation and monocyte adhesion) could be demonstrated. Specifically, the sustained upregulation of VCAM-1 and increased monocyte adhesion to EC exposed to DF was similar to that found in EC in vivo at atherosclerosis-prone regions, confirming the relevance of our model system for in vivo conditions. Distinct differences in the cellular response induced by TNFalpha and DF suggest that the effects of DF are not mediated entirely by the same signaling pathways that activate NF-kappaB. These studies demonstrate extensive and pathophysiologically relevant changes in sustained gene expression patterns in aortic EC exposed to DF compared with LF which are predicted to induce a proatherogenic EC phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene expression profiling of vascular endothelial cells exposed to fluid mechanical forces: relevance for focal susceptibility to atherosclerosis.

Gene expression profiling has revealed that cultured vascular endothelial cells (EC) respond to fluid mechanical forces by modulating the mRNA level of a large number of genes. However, differences between the gene arrays and the experimental conditions employed by different researchers make comparison between data sets difficult, and limit the interpretation of the results. Despite these probl...

متن کامل

Effect of Purification of Human Adipose-derived Mesenchymal Stem Cells on the Expression of vWF Cell Factor Under Chemical and Mechanical Conditions

Introduction: Human adipose-derived mesenchymal stem cells (hADSCs) are easily accessible in the body, and under appropriate conditions, they can be directed toward various phenotypes. Therefore, hADSCs have been considered as a potential cell source for tissue engineering applications. hADSCs are able to differentiate into endothelial cells which covers the interior surface of vessels, in vi...

متن کامل

Specific induction of tie1 promoter by disturbed flow in atherosclerosis-prone vascular niches and flow-obstructing pathologies.

Nonlaminar flow is a major predisposing factor to atherosclerosis. Yet little is known regarding hemodynamic gene regulation in disease-prone areas of the vascular tree in vivo. We have determined spatial patterns of expression of endothelial cell receptors in the arterial tree and of reporter gene constructs in transgenic animals. In this study we show that the endothelial cell-specific recept...

متن کامل

Novel mechanisms of endothelial mechanotransduction.

Atherosclerosis is a focal disease that develops preferentially where nonlaminar, disturbed blood flow occurs, such as branches, bifurcations, and curvatures of large arteries. Endothelial cells sense and respond differently to disturbed flow compared with steady laminar flow. Disturbed flow that occurs in so-called atheroprone areas activates proinflammatory and apoptotic signaling, and this r...

متن کامل

Investigation of FLK-1 Gene Expression in Differentiated Mesenchymal Stem Cells, Exposed to Chemical, Mechanical and Chemical-mechanical Factors, in order to Study the Differentiation and its Stability

Background: Mesenchymal stem cells (MSCs) are multipotent cells, capable of differentiating into different cell lines.They can sense their surrounding biochemical and biophysical factors, which play major roles in their differentiation toward different phenotypes. Therefore, the exposure of these cells to endothelial growth factor (VEGF) as well as hemodynamic biomechanical forces, which act on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological genomics

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2002